

## **Gaia MPS Summary**

A. Atzei

Gaia System Engineer

19 September 2011

European Space Agency

#### Gaia mission objectives



To create the largest and most precise 3D chart of our Galaxy by providing positional and velocity measurements for about one billion stars

> Astrometry and Photometry for at least one billion stars (1% of the stars in the Milky Way)

Spectroscopy for about 150 million stars

> One billion objects observed on the average 70 times over 5 years mission is 40 million stars a day (400 million measurements a day)

> Orders of magnitude improvement w.r.t. Hipparcos



### From Hipparcos to Gaia



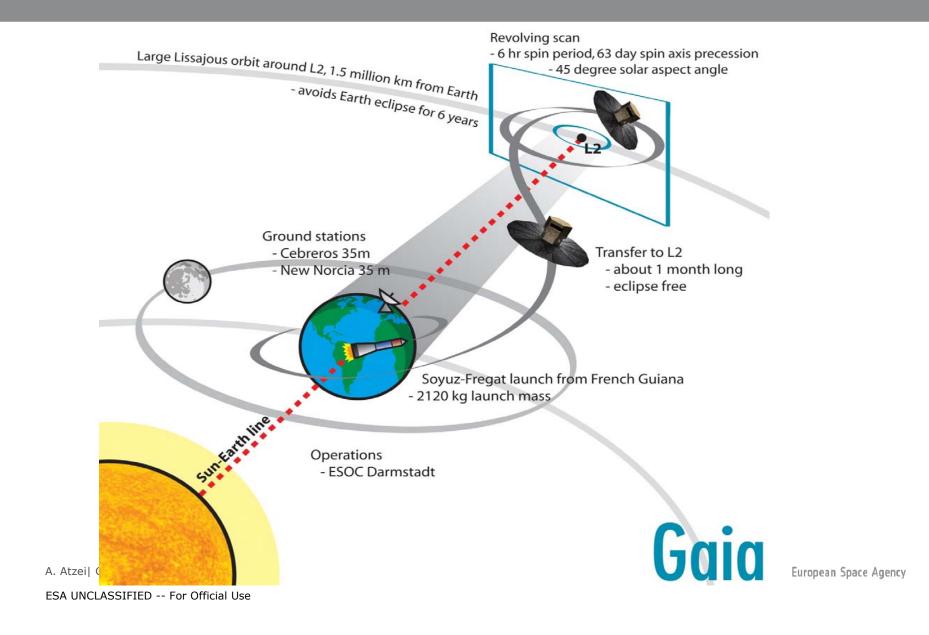
|                          | Hipparcos          | GAIA                         |  |
|--------------------------|--------------------|------------------------------|--|
| Magnitude limit          | 12                 | 20 mag                       |  |
| Completeness             | 7.3 – 9.0          | ~20 mag                      |  |
| Bright limit             | ~0                 | ~3-7 mag                     |  |
| Number of objects        | 120 000            | 26 million to $V = 15$       |  |
|                          |                    | 250 million to $V = 18$      |  |
|                          |                    | 1000 million to $V = 20$     |  |
| Effective distance limit | 1 kpc              | 1 Mpc                        |  |
| Quasars                  | None               | $\sim 5 \times 10^5$         |  |
| Galaxies                 | None               | $10^6 - 10^7$                |  |
| Accuracy                 | ~1 milliarcsec     | 4 $\mu$ arcsec at V = 10     |  |
|                          |                    | 10-15 $\mu$ arcsec at V = 15 |  |
|                          |                    | 200-300 µarcsec at V = 20    |  |
| Broad band               | 2-colour (B and V) | 5-colour to $V = 20$         |  |
| Medium band              | None               | 11-colour to $V = 20$        |  |
| Radial velocity          | None               | 1-10  km/s to V = 16-17      |  |
| Observing programme      | Pre-selected       | Complete and unbiased        |  |

## Gaia science performances



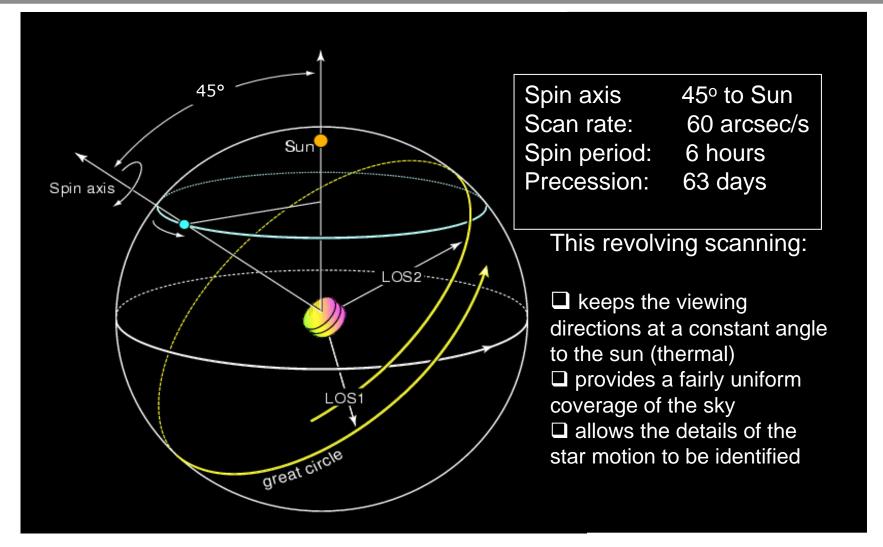
|            | Band   | EOM<br>Performance [mmag] | Specification |
|------------|--------|---------------------------|---------------|
|            | C1M410 | 5                         | < 10          |
| B1V - V=15 | C1M549 | 5                         | < 8           |
|            | C1M965 | 8                         | < 20          |
|            | C1M410 | 6                         | < 10          |
| G2V - V=15 | C1M549 | 5                         | < 8           |
|            | C1M965 | 6                         | < 10          |
| M6V - V=15 | C1M410 | 16                        | < 20          |
|            | C1M549 | 5                         | < 8           |
|            | C1M965 | 4                         | < 10          |

End of mission photometry performances


|     | V mag  | EOM<br>Performance [µas] | Specification |
|-----|--------|--------------------------|---------------|
|     | < 10.0 | 8.3                      | < 7           |
| B1V | 15.0   | 26.2                     | < 25          |
|     | 20.0   | 326.3                    | < 300         |
|     | < 10.0 | 8.5                      | < 7           |
| G2V | 15.0   | 24.2                     | < 24          |
|     | 20.0   | 290.2                    | < 300         |
|     | < 10.0 | 10.4                     | < 7           |
| M6V | 15.0   | 9.2                      | < 12          |
|     | 20.0   | 96.6                     | < 100         |

End of mission astrometry performances

|                                                          | V mag | EOM<br>Performance [km/sec] | Specification |
|----------------------------------------------------------|-------|-----------------------------|---------------|
| B1V                                                      | 7.0   | 0.6                         | < 1           |
| ым                                                       | 12.0  | 8.5                         | < 15          |
| C 2) /                                                   | 13.0  | 0.6                         | < 1           |
| G2V                                                      | 16.5  | 12.8                        | < 15          |
| K1IIIMP                                                  | 13.5  | 0.6                         | < 1           |
|                                                          | 17.0  | 13.3                        | < 15          |
| End of mission radial velocity spectrometry performances |       |                             |               |


#### Launch and operations





#### Gaia sky scanning principle





A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 6

European Space Agency

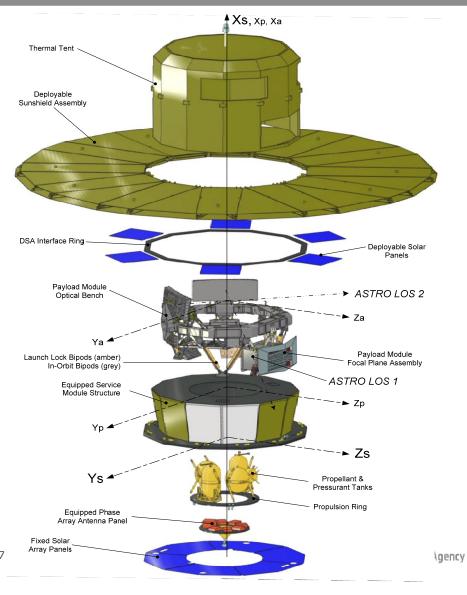
#### **Overview of the spacecraft**



#### Mass

- S/C launch mass 2100 kg
- Bi-propellant mass 250 kg
- Cold gas propellant mass 60 kg

#### Power


• 1.9 kW

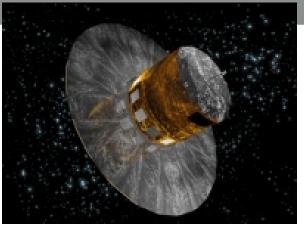
#### Data management

- Data rate up to 7.5 Mbps
- Data storage 1 Terabit
- Atomic clock 1 s drift in 250000 y

#### Optical payload

- Two telescopes
- Entrance pupil 1.45 x 0.5 m<sup>2</sup>
- Focal length 35 m
- Field of View 1.58 x 0.69 deg
- Focal plane size 1 Gpixels




A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 7

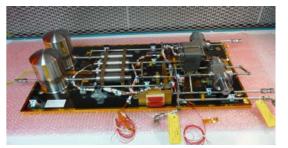
#### Gaia MPS requirements



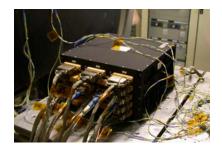
The Gaia Cold Gas MicroPropulsion System (MPS) is being devloped and produced by TAS-I

Gaia MPS must provide a fine control of the generated thrust using proportional operation, with innovative and challenging thrust requirements:



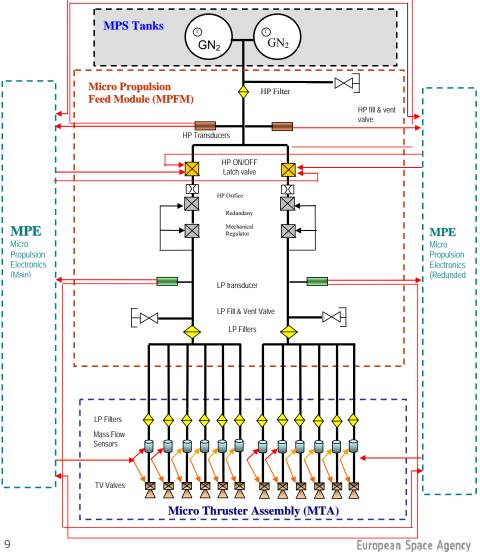

- 1. dynamic range (commanded thrust ranging in 1 to 500  $\mu$ N , 0.1  $\mu$ N steps)
- 2. very low noise (1  $\mu N/\sqrt{\text{Hz}}$  from 0.01 Hz to 1 Hz and 0.045  $\mu N/\sqrt{\text{Hz}}$  above 1 Hz) and thrust bias ( $\leq 0.5~\mu N$ )
- 3. low time response ( < 300 ms @63% of the new commanded thrust level, at a command frequency of 1 Hz))
- 4. high accuracy (scale factor knowledge error < 1% of thrust) resolution ( < 1  $\mu$ N )
- 5. specific Impulse ( >60 sec @20°C) to be achieved throughout the whole thrust range
- 6. Lifetime of 6.5 years; 153 million on/off cycles and 1.23 billion thrust command changes

#### Gaia MPS Architecture




The Gaia MPS is composed by 3 main units:

 MPFM – Micro Propulsion Feed Module (nominal and redundant branches)

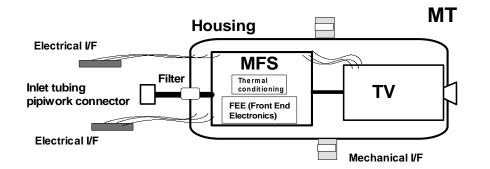



• MPE – Micro Propulsion Electronics (nominal and redundant sections)

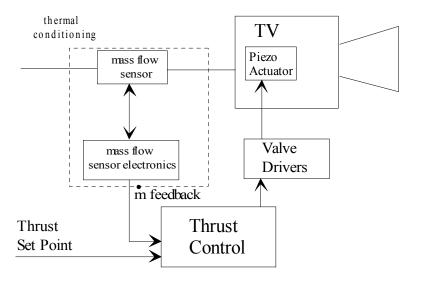


 MTA – Micro Thruster Assembly (6 nominal and 6 redundant sets)

A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 9




## Micro Thruster Assembly (MTA)




MTA (6+6 MT's) functions ( each MT ) are :

- to generate and finely throttle the thrust
- to provide insulation (closure of the nozzle throat) with very low leakage
- to provide monitor of the propellant mass flow



A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 10

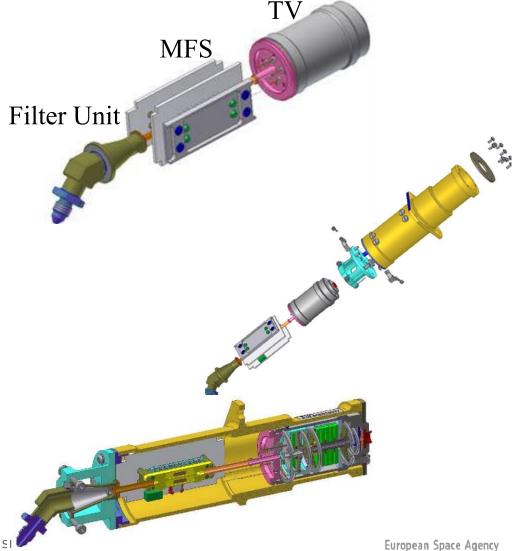


The MT design takes into account :

- •Hysteresis behavior of piezo actuator
- •Working tolerances and materials CTE
- •Operational temperature range
- Leakage
- •Thrust noise requirements
- •Flow regulation dynamics
- •Wear/lifetime aspects
- Mechanical environment

European Space Agency

### MTA key elements




The MT unit includes:

- Mechanical Housing and inlet pipeline
- TV (Thruster Valve) MFS assembly including the FEE & Electrical connectors (x 2)
- MFS (Mass Flow Sensor)
  - Mass flow sensing through thermal conditioning
  - Inlet Low Pressure Filter
  - Internal Pipe work



A. Atzei | Gaia MPS Overview for Microscope, 19 September 2011 | SI



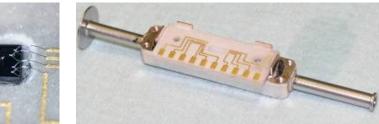
## TV and MFS (including FEE)

esa

TV unit includes:

- 1. Piezo-electric actuator
- 2. Plunger, connected to the piezo-ceramic actuator
- 3. Antagonist S-shaped spring which pushes the plunger against the orifice (power off)
- 4. Micro Nozzle integrated in the valve body,
- 5. Mechanical Housing & pipeline connections




Φ=30 mm L=64.3 mm M= 100g

European Space Agency

MFS assembly includes:

- 1. Si chip
- Al<sub>2</sub>O<sub>3</sub> support, metalized to allow brazing to the fluidic assembly
- 3. Fluidic assembly (brazed on support)
- 4. Input/output connections
- 5. Double Board FEE for the MFS conditioning







A. Atzei | Gaia MPS Overview for Microscope, 19 September 2011 | Slide 12

### Gaia MPS Budgets



| Components                                                | No.<br>of items | Envelope<br>(mm)                        | Item Mass wt.<br>contingency (Kg) |
|-----------------------------------------------------------|-----------------|-----------------------------------------|-----------------------------------|
| MT's + cables &<br>brackets                               | 6+6             | 184,3 x 62 x 52,5 each                  | =0.37 x 12 = 4.4                  |
| MPE (nom+red.)                                            | 1 box           | 250x150x120                             | 4.9                               |
| Electrical Harness                                        | 1 set           |                                         | 5.2                               |
| MPFM (2 branches),<br>with Piping, fittings<br>& brackets | 1 ass.y         | 650 x 340 x 200<br>(mounted on a panel) | 8,0                               |
| TOTAL MPS Dry                                             |                 |                                         | 23.8                              |

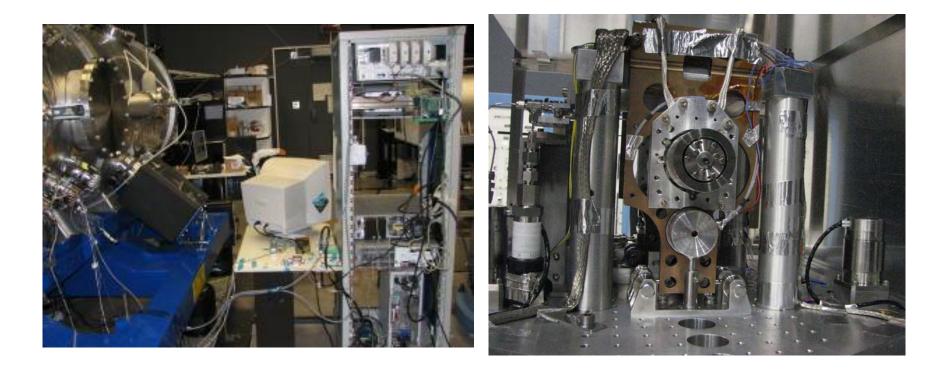
| Power consumption    | Idle      | Warm-up      | Typical      | Peak         |
|----------------------|-----------|--------------|--------------|--------------|
| Power at primary bus | 8.0 W     | 30.3 W       | 25.6 W       | 47.1 W       |
| plus as measured on  | (incl.3 W | (incl. 2.6 W | (incl. 2.2 W | (incl. 2.7 W |
| the EQM unit         | margin)   | margin)      | margin)      | margin)      |

A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 13

#### Flow Rate Resolution Test



resolution of 0.08 scc/m around 1 scc/m. Tamb.


Blue plot: MFS signal
violet plot: set point,
green plot: Vreg

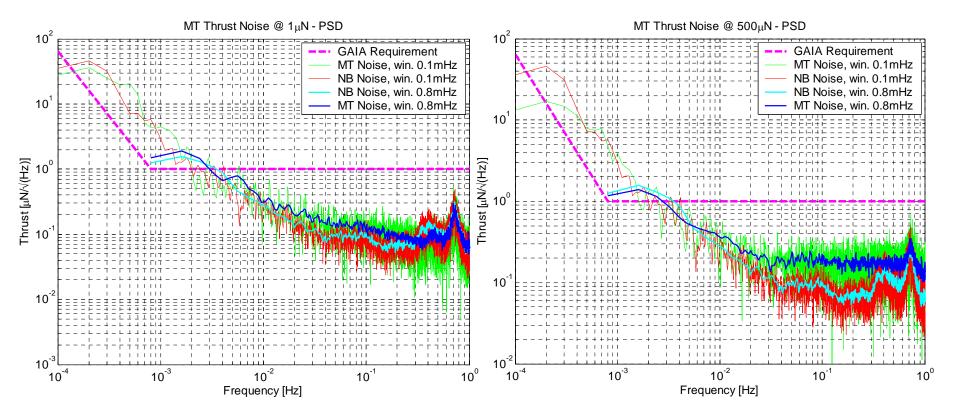


A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 14

#### MT Qualification at the ONERA Nanobalance Facility (1/4)






A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 15

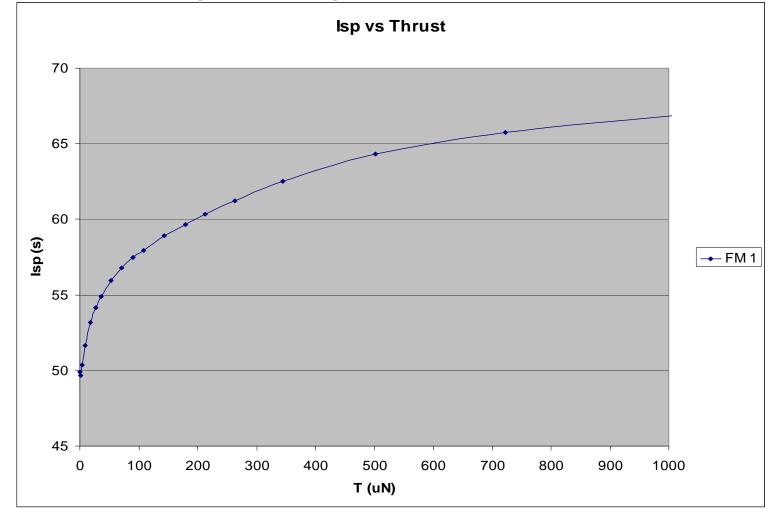
ESA UNCLASSIFIED -- For Official Use

#### MT Qualification at the ONERA Nanobalance Facility (2/4)



### Thrust noise



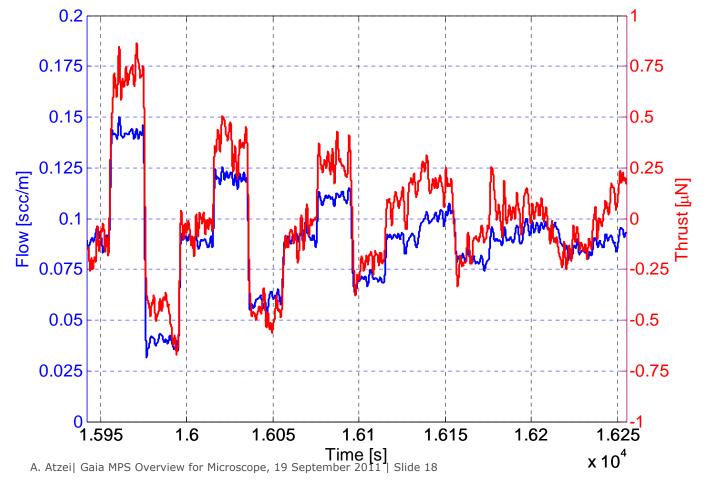

A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 16

European Space Agency

# MT Qualification at the ONERA Nanobalance Facility (3/4)



#### Specific Impulse vs. Flow Rate




A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 17

# MT Qualification at the ONERA Nanobalance Facility (4/4)



## **Thrust resolution**



ESA UNCLASSIFIED -- For Official Use

#### Conclusion



- The development phase of the Gaia MPS system is finished
- The first flight models have been successfully produced and delivered
- The performance test in ONERA has shown that the performance in terms of performance, noise, response time, resolution, etc. is compatible with the Gaia requirements
- With limited adaptations to the MPS electronics, the Gaia MPS system is compatible with the Microscope requirements

#### Any Questions?





Gaia FM Service Model



#### Gaia FM Payload Model

A. Atzei| Gaia MPS Overview for Microscope, 19 September 2011 | Slide 20

ESA UNCLASSIFIED -- For Official Use